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Granger causality

o Originally for economy

= observing flow of information

= (1969, Sir Clive William John Granger; 2003 Nobel Prize for Economic Sciences)

o Explain direction and significance of connection

© How good can signal from one area predict signal

In another brain area ()

O Uses autoregressive models @) l-Gs
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Granger causality

o Prior knowledge about model of interactions Is

needed P—
A B ( X
O Inaccuracies: -

o Omitting important areas in model or including ,noisy areas”
o Regional variability of hemodynamic response

o GC doesn't consider any neurobiological relevant model of neural

dynamics
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Granger causality

o LA classic example is to look at a drunk walking her dog. Both the drunk
and her dog follow a random path, but they still try to stay close to each
other. The paths are not actually correlated. Instead we say the 2 paths

are Co-Integrated.”

O Causation is not correlation

o https://charlesmartin14.wordpress.com/2013/05/27/causati0n-vs-correIation-grangér-causality/
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Granger causality

o Applicable on block data, event related design and task free

data

o Structural model is not strictly required

o Domain

o Time representation

o Frequency (normalized) representation
o Application:
o ,Seed based” — for pairs of voxels (two dimensional)

o Don't need structural model (Exploratory)

o Between functional networks (identified by e.g. ICA)
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Granger causality

o GC between time series of spatially independent components

Granger causality

0.24
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Dynamic causal modelling - DCM

o Developed for fMRI (2003)
o Extended for EEG, MEG, FNIRS, ...

o |dea to treat the brain as a deterministic nonlinear dynamic
system that is subject to inputs and produces outputs
(Friston, 2003)
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Dynamic causal modelling - DCM

o Brain as input-state-output system

o Two types of inputs:

» Influence on specific anatomical regions (nodes) — u,

» Modulation of coupling among regions (nodes) — u,
" Stimulus-free N

contextual mputs - u,
N {eg cognitive set or nmey
\—..'-/

~Stimulus-bound
( perturbations - u; >

\@iisual words
L)
’

o E.g. visual input:

EPCEITEC



Dynamic causal modelling - DCM

o Uses state space for description

of the system to model intrinsic z,(t) .
_ . variables of

dynamiCS Z(t) — . the system
O Input — experimental stimuli 2 (t)_

(psychological conditions) 2. f.(z,..2,,u,6,)
o QOutput — time series of L=

measured signal _Zn_ i f.(zy...2,,U, ‘9n)_
O Intrinsic states — states of neural

:=F(z,u,0)

populations
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Dynamic causal modelling - DCM

o Uses neurobiological relevant model of neural populations
dynamics combined with biophysical relevant forward
model describing transformation of neural activity to

measured signal
O Interactions are modelled on neuronal level

o Can gquantify strength of connections
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Dynamic causal modelling - DCM y

hemodynamic
n n BOLD model

<

neuronal
states

integration
modulatory
. input u,(t)
driving
input u,(t)
>{
endogenous
connectivity
ot modulation of

connectivity

The classical DCM:
a deterministic, one-state,
bilinear model

direct inpus ——

Source: Klaas Enno Stephan, Zurich SPM Course 2014 5 C_E= 1T E=C




state intrinsic modulation of system direct m external
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Source: Klaas Enno Stephan, Connectivity Workshop Melbourne,
2005



DCM - Bilinear state equation
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DCM - Bilinear state equation

Example:
generated neural data

Source: Klaas Enno Stephan, Connectivity Workshop Melbourne, DPCEITEC
2005




Dynamic causal modelling - DCM
o Not exploratory
o For testing very specific hypotheses
(need to be precisely specified)

0.2367

o Estimation of parameters — EM 09520

algorithm with priors

o Finally are estimated posterior
probabilities, concerning if connection
strengths are stronger than selected

threshold
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Dynamic causal modelling - DCM

o Hypotheses for testing:

o Significance of specified connections (explained by

posterior probability)

o Comparison of suitability of several specified models with
differences are in structure and allowed connections. Most

suitable model is selected by Bayesian selection (BMS).

S1BF | siBF | M

Thalamus : ) Thalamus
Group ) X Group )
Striatum triatum
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DCM - planning a study

o DCM can be applied to most datasets analysed using a

new competing hypotheses

[ supject KER

about a neural system | N mdjoct US

GLM.

3 5 8 B 8 8 &8 &

-
LT ’ 7, »
- &
definition of a set of candidate I| II
DCMs as neural system models

time series analysis:
Bayesian model comparison
of candidate DCMs

data acquisition
and selection of
activated ROIs

design an experimental study
to discriminate among
candida te DCMs

v l "
)
2
»

o BUT! there are certain parameters that can be optimised for a DCM

Stu dy (Daunizeau, J. et al (2011). Optimizing experimental design for comparing models of brain function.)

EPCEITEC




1.

2.

4.

DCM - analysis

Define your contrast (e.g. task vs. rest) and extract the time-series for

the areas of interest.

» The areas need to be the same for all subjects.

» There needs to be significant activation in the areas that you extract - DCM predicts

responses to experimental manipulations

Defining the model space - depend largely on your hypotheses

Model Estimation

Inference
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Separate fitting of identical models for each subject

—

Family Level

—

Does the winning family differ by
group/condition/performance!?

\

Model Level

b

S

Does the winning model differ by
group/condition/performance?

Parameter Level

/\

Within Groups

parameter > 0 ?

parameter | >
parameter 2 ?

3

Does connection strength vary by

performance/symptoms/other variable!?

Between Groups

A

Connection from region A ->region B
group | > group 2?

Source: Klaas Enno Stephan, Zurich SPM Course 2014



DCM application

o Classification of two patients groups with synesthesia
graph — color (perception of one evokes sensation of different sense)

Bottom-up Top-down

(Ramachandran & Hubbard, 2007) (Grossenbacher & Lovelace, 2007)
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