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Introduction

« Independent Component Analysis (ICA)
« A multidimensional statistical method
= Allows extraction unknown sources (Blind Source Separ.)

= No need for apriori information about data

= Useful on Resting-State data
Avoid low sensitivity due inaccurate model
Avoid multiple statistical testing (as for single dim. methods)

=  Limitations
= Need to estimate # of sources

= Sources must not have a Gaussian distribution (with exception of
one) and be statistically independent (spatial and temporal domain)

= Direct interpretation problematic
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ICA principle

= ICA model - spatial ICA (sICA)
« X=A-S=W1!-8§
= Data matrix (X) is decomposed into linear combination of spatially
independent sources (S) of variability
= Assumption that brain activity sources are not overlapping

Data matrix Mixing matrix ~Components

voxels —» ICs > voxels—
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= X = 3| w
J l _
\I«MMWW
- |nversion model time — "
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Estimation of demixing matrix (W) in order to maximize statistical

independence of sources (rows of matrix S)
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ICA principle

ICA model
. X#A-SFW!-S

~ —_ =
N\
Due ambiguity of right side of the equation
= We cannot determine order of sources (contrast to PCA)
= We cannot determine sign
= Output component’s variance is set to 1

Noise-free model

= All sources of variability in data are separated into ICs, i.e. brain networks,
task-related activity, and also noise, such as movement artifacts, etc.

Mixing matrix limitations
= (maximum rank, square)
= # of components has to be <= # of observations ( = timepoints in fMRI)
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PCA finds directions ICA finds directions
of maximal variance which maximize independence

(using second order statistics) (using higher order statistics)



|ICA model calculation

= Estimation of demixing matrix (W)
lterative process

« 1.step — initialization of W (random)

= 2.step — maximization of statistical independence between
components (rows of S) according to selected criterion
Minimization of Mutual Information
Maximization of non-Gaussianity (negentropy)

= Repeat until convergence condition met

= Many algorithms available
Infomax, FastICA, JADE, Amuse, etc.
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Measured data (realigned, normalized and smoothed)

PCA reduction
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Estimating # of components/sources

« Each process should be represented by one component

a) Possible to set threshold based on contained variability (PCA)

by Analytical tool, such as Minimum Description Length (MDL)
= Information theoretic criterion based on data compression

c) Arbitrary number, usually 15 to 100 ICs for fMRI data

= Too many components
= Meaningful ICs (such as brain networks) split up,
= Increasing computational workload and time

= Too few components
= Merging different sources (overlapping activity)
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ICASSO

(J.Himberg, 2003)

« Repeating ICA calculation using
= Bootstrapping
= Different initial conditions (mixing matrix)
- (Both of above)

= Projecting results to multidimensional space
« Resulting ICs as cluster centroids

= Cluster size corresponds to stability
and reliability of ICA estimates

= Noise ICs are usually unstable

= When increasing # of components,
the stability decreases quickly
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Data reduction using PCA

= Principal Component Analysis (PCA)

= Reducing dimensionality while preserving maximum variability
Whitening (decorrelation) facilitates ICA calculation
Useful for group ICA

voxels —»

g voxels — . .
2 [TPca | - El «| x |3 PCAreduction
3 - !+ Matrix R can be found
v PCA St analytically using eigenvectors
components and eigenvalues of matrix X*XT
o voxels —» voxels — . .
E B ICA inversion model
LS |- x| PCA |
g’ ICA demixing PCA
components matrix components

DPCEITEC




Postprocessing ICs

= Sorting based on spatial distribution

Similarity to well-known mask A 0% £R AB £B £ER &R
(Default Mode Network, etc.) ryy "i‘j”ﬂl"é)' é’%’

PO0OBVe

Expert evaluation: for example
movement artifacts represented
as corona shapes on the edges
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= Sorting based on timecourse parameters (in freg.domain too)

R-=quare Statistic =0.81757 (Temporal Detrend value = 3)

Low frequency components = Resting State Networks E
High freq. components = noise, large vessels artifacts [

Task-related components based |
on correlation with stim.timecourse
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Postprocessing ICs

« Semi-automated IC-fingerprint classificator (F.DeMartino, 2007)

Description using 11 measures based both on spatial and temporal
parameters (kurtosis,skewness, entropy, one-lag autocorrelation, etc.)

Components representing same process have similar ,fingerprint® in
parametric space
SVM-classificator

6 classes
« BOLD (both task and non-task)
= Motion artifacts
« EPI susceptibility artifacts
= Vessels and other noise artifacts

Need to expert-labelled data
Robust results (multiple datasets)
= About 90% sensitivity for BOLD
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gnbine single subject ICAs
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= Back reconstruction of individual ICs for all subjects by separation of mixing matrix

or dual regression

= Resulting ICs can be tested for significance (among group) using voxel-by-voxel
based T-test, calculation of mean spatial map and time course
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Brief overview of software tools

- fMRI data toolboxes that allows ICA
= GIFT or ICATB (http://mialab.mrn.org/software/gift)
« MELODIC (part of FSL) (www.fmrib.ox.ac.uk/fsl)
= BrainVoyager
= efc.

- fMRI data denoising

= FIX (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/F1X) ‘
= uses 180 features (both spatial and temporal) S
= automated classificator _I{MWWW

= very high (95%) overall accuracy e

Lead clasiication.

= Principle: zeroing noise IC’s and reconstruction of data
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Practical example — prof.Rektorova’s study

300scan/15min resting state
Healthy control group
Patients with Alzheimer Disease (AD)

ICA performed for both groups

DMN component for each subject selected
using comparison with mask

Statistical testing between groups

(arrows points out significant differences)

Healthy controls | AD Patients
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ICA In context of functional connectivity
(E.A.Allen, 2012)

= ICA components can be seen as functional networks

= Brain regions represented in one IC shares similar BOLD activity pattern =>
similar metabolism, neural activity => they are functionally connected

= Investigating connectivity or causality based on comparing IC’s timecourses

A IDENTIFICATION OF INTRINSIC CONNECTIVITY NETWORKS (ICNs)
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